The lightning data you see shown along with radar displays likely comes from the National Lightning Detection Network (NLDN). The NLDN began operation as a regional network run by the State University of New York at Albany in 1983. The NLDN was eventually acquired by Global Atmospherics, Inc., and then in 2002 by Vaisala, Inc., a company that develops, manufactures and markets products and services for environmental and industrial measurement, especially meteorology and hydrology. The NLDN became national in coverage in 1989. It consists of over 100 remote, ground-based sensing stations located across the United States that instantaneously detect the electromagnetic signals given off when lightning strikes the earth's surface. These remote sensors send the raw data via a satellite-based communications network to the Network Control Center (NCC) in Tucson, Arizona. Within seconds of a lightning strike, the NCC's central analyzers process information on the location, time, polarity of the strike, and communicate this information to users across the country.
This lightning data is used by the utility industry, NASA, the National Weather Service, aviation, forestry, and many others. More information on the NLDN can be found here.
A map from Vaisala's "Lightning Explorer". Data on the map is 20 minutes delayed and updated every 20 minutes. |
Blitzortung
Blitzortung.org is sort of a CoCoRaHS for lightning. It is a world-wide lightning detection network for the location of electromagnetic discharges in the atmosphere (lightning discharges) based on the time of arrival (TOA) and time of group arrival (TOGA) method. It was developed by a few people in Germany several years ago, and since has expanded world-wide. This lightning detection network consists of volunteers with lightning detectors constructed from a kit developed by the Blitzortung group. The detectors transmit data to a central processing server over the Internet, which then processes the data to determine the location of lightning strikes. Other volunteers include programmers who develop and/or implement algorithms for the location or visualization of sferic positions (sferics are a type of radio signal produced by lightning), and people who assist to keep the system running. There are about 110 detection stations in the U.S. Lightning data is also available for Europe and eastern Australia.
The web site includes a world-wide live map of current lightning strikes, an archive of lightning data, and information on how to obtain a kit to build your own lightning detector. The construction of the detector requires some knowledge of and skills in electronics.
LightningMaps.org
LightningMaps.org is a community project with free lightning maps and applications. Real-time lightning data is available on a map-based interface utilizing the data from Blitzortung. New lightning strikes are depicted by yellow dots with red circle.The red circle disappears after 30 seconds, and the dots become darker as the time from the strike increases. There is an option to view the "thunder ring", a white circle that expands out from the strike at the speed of sound. There is also an option that allows you to turn on a layer showing the radar reflectivity.
Lightning strikes as displayed by lightningmps.org. |
There are a number of apps available for your smart phone and tablet to alert you of nearby lightning strikes. One I like is free and uses the Blitzortung data feed.It's called "Blitzortung Lightning Monitor" and has some really nice features, including the ability to notify you of nearby lightning strikes. This is an Android version. I don't know if it is available for iOS.
The Blitzortung Lighting Monitor app. Click the image to enlarge and read the annotations. |
More Information on Lightning
Severe Weather 101: Lightning Basics (National Severe Storms Laboratory)
Lightning in Super Slow Motion – video clip from Discovery Channel's "Raging Planet" on the subject of lightning.
Lightning: JetStream – Online School for Weather (NOAA)